Федеральное государственное образовательное бюджетное учреждение высшего образования

«Финансовый университет при Правительстве Российской Федерации» (Финансовый университет)

Калужский филиал

ОБСУЖДЕНО И ОДОБРЕНО на Ученом совете филиала Финуниверситета Протокол № 32

Протокол от «9» сентября 2025 г.

УТВЕРЖЯЛЮ
Директор Каружского филиала
Финуливерситета
В.А. Магчинов
«9у/еентибря 2025 г.

ПРОГРАММА

повышения квалификации

«Современные тренды и цифровые инструменты анализа данных в научных исследованиях»

ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Современные тренды и цифровые инструменты анализа данных в научных исследованиях»

Общая характеристика программы

Цель программы - получение профессиональных компетенций для выполнения анализа данных научных исследований с помощью цифровых инструментов.

Программа разработана в соответствии с профессиональным стандартом 08.022 Статистик (утв. приказом Министерства труда и социальной защиты РФ от 8 сентября 2015 г. N 605н).

Перечень профессиональных компетенций в рамках имеющейся квалификации, качественное изменение которых осуществляется в процессе обучения:

- способность осуществлять прогнозирование с помощью экономикоматематических моделей, строить прогнозы, работать с линией тренда посредством цифровых инструментов;
- способность применять методы корреляционного, регрессионного, дисперсионного анализа данных в научных исследованиях посредством цифровых инструментов;
- способность представлять и визуализировать данные, выстраивать модели анализа данных на языке Python;
- способность вычислять метрики бинарной классификации, создавать и исследовать модели в среде Google Colaboratory.

Планируемые результаты обучения по программе

По итогам освоения программы слушатели должны:

Знать:

- понятие и виды дизайнов научного исследования, этапы конструирования дизайна научного исследования;
- современные тренды и цифровые инструменты экономического и финансового анализа;
- особенности математического моделирования в научном исследовании; модели анализа данных.

Уметь:

- осуществлять прогнозирование с помощью экономико-математических моделей, строить прогнозы, работать с линией тренда посредством цифровых инструментов;
- применять методы корреляционного, регрессионного, дисперсионного анализа данных в научных исследованиях посредством цифровых инструментов;
- представлять и визуализировать данные, выстраивать модели анализа данных на языке Python;
- вычислять метрики бинарной классификации, создавать и исследовать модели в среде Google Colaboratory.

Федеральное государственное образовательное бюджетное учреждение высшего образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет)

Калужский филиал

Обсуждено и одобрено на Ученом совете Калужского филиала Финуниверситета Протокол № 32

от "9" сентября 2025 г.

УЧЕБНЫЙ ПЛАН

программы повышения квалификации

«Современные тренды и цифровые инструменты анализа данных в научных исследованиях»

Цель	Получение профессиональных компетенций для выполнения анализа данных научных исследований с помощью цифровых инструментов
Категория слуппателей	Научно-педагогические работники, исследователи, молодые ученые, специалисты-практики, обучающиеся вузов
Срок обучения	36 часов
Форма обучения	Очная (с применением дистанционных образовательных технологий)
Режим занятий	4-8 часов в день

		часов	Аудито	орные з	занятия	ьная	Форм
№ 11/11	Наименование разделов и тем	Всего часо	Всего, часов	лекі(ии	практиче хин	Самостоятель	а коптр оля
I	2	3	4	5	6	7	8

1	Тема 1. Дизайн научного исследования. Успешные дизайны современных исследований (на примере SPSS)	2	2	2	-	_	Тест
2.	Тема 2. Современные тенденции и тренды экономического анализа	2	2	2	-	-	Гест
3.	Тема 3. Современные инструменты финансового анализа	2	2	2	-	-	Тест
4.	Тема 4. Экономико-математическое моделирование	3	2	1	1	1	113
5.	Тема 5. Корреляционный апализ для выявления взаимосвязи между величинами и его проведение средствами Excel	4	3	1	2	1	173
6.	Тема 6. Регрессионный анализ как средство оценки взаимосвязи и моделирования зависимости между переменными. Использование инструментов Excel для его проведения	4	3	1	2	1	[13
7.	Тема 7. Дисперсионный анализ как средство выявления зависимостей в экспериментальных дапных и его реализация с помощью функций Excel	4	3	1	2	1	113
8.	Teмa 8. Знакомство с онлайн-средой Google Colaboratory. Представление и визуализация данных на языке Python	4	2	2	9-	2	[13
9.	Тема 9. Модели линейной и полиномиальной регрессий	1	1	-	1	-	113
10.	Тема 10. Модель бинарной логистической регрессии	1	1	-	1	-	173
11.	Тема 11. Модели дерева принятия решений и случайного леса	1	1	_	1	-	ПЗ
12.	Тема 12. Модель кластерного анализа k- means	1	1	-	1	_	LI3
13.	Тема 13. Модели факторного и разведочного анализа данных	1	1	-	1	-	1.13
14.	Тема 14. Модели сверточных нейронных сетей	1	1	-	1	-	173
15.	Тема 15. Оценка точности моделей	3	3	2	1	-	113
	Beero	34	28	14	14	6	
	Итоговая аттестация	2	-	-	-		зачет
	Общая трудоемкость программы	36	28	14	14	6	-

Разработчики программы:

Никаноркина Наталия Владимировна - к.пед.н., доцент кафедры «Бизнесинформатика и высшая математика» Калужского филиала Финуниверситета

Ткаченко Алексей Леонидович- к.т.н., доцент

Винокуров Игорь Викторович - к.т.н., доцент кафедры «Бизнес-информатика и высшая математика» Калужского филиала Финуниверситета

Начальник отдела ДОПиТВ «9» сентября 2025 г.

of_

А.С. Ремизова

Федеральное государственное бюджетное учреждение высшего образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет)

Калужский филиал

Календарный учебный график

программы повышения квалификации

«Современные тренды и инфровые инструменты анализа данных в научных исследованнях»

Объем программы - 36 час.

Продолжительность обучения – 5 дней

Форма обучения – очная, с применением дистанционных образовательных технологий

n\ n\	Пянменование дисциплин (модулей), тем	1 день	2 день	3 день	4 день	5 день	KP	СР	С	ПА	HA	Beero
1	Дизайн научного исследования. Успешные дизайны современных исследований (на примере SPSS)	2								Тестирование		2
2	Современные тенденции и тренды экономического анализа	2								Тестирование		2
3	Современные инструменты финансового анализа	2						l		Тестирование		2
4	Экономико-математическое моделирование	2	1]				<u> </u>	ПЗ		3
5	Корреляционный анализ для выявления взаимосвязи между величинами и его проведение средствами Excel		4							ПЗ		4
6	Регрессионный анализ как средство оценки взаимосвязи и моделирования зависимости между переменными. Использование инструментов Excel для его проведения		3	1						ПЗ		4
7	Дисперсионный анализ как средство выявления зависимостей в экспериментальных данных и его реализация с помощью функций Excel			4						ПЗ		4
8	Знакомство с онлайн-средой Google Colaboratory. Представление и визуализация данных на языке Python			3	ı					ПЗ		4
9	Модели линейной и полиномиальной регрессий				1					П3		1
10	Модель бинарной логистической регрессии				1					П3		- L
11	Модели дерева принятия решений и случайного леса				1					ПЗ		I
12	Модель кластерного анализа k-means				1					ПЗ		E
13	Модели факторного и разведочного анализа данных				1					П3		l
14	Модели сверточных нейронных сетей				L					П3		
15	Оценка точности моделей					2				[13		3
16	Итоговая аттестация					2	-			Тестирование	2	2

17 Итого

Начальник отдела ДОПиТВ «9» сентября 2025 г.

Условные обозначения: КР – контактная работа; СР – самостоятельная работа; ПА -

8	8	8	8	4	Тестирование	36

А.С. Ремизова

- промежуточная аттестация; С – стажировка; ИА – итоговая аттестация.

Содержание тем

Tema 1. Дизайн научного исследования. Успешные дизайны современных исследований (на примере SPSS

Понятие дизайна исследования. Виды дизайнов исследования. Количественный, качественный и смешанный дизайны исследования. Подходы к дизайну исследования. Стилевой подход. Процессный подход. Конструирование дизайна исследования. Этапы. Структурные компоненты. Дизайны научных исследований по типам научных гипотез. Первичная обработка данных. Средние значения и описательные статистики. Корреляционное исследования. Сравнительный (сопоставительный) анализ. Дисперсионный анализ. Сравнение средних значений. Примеры в интерфейсе SPSS.

Тема 2. Современные тепдепции и тренды экономического анализа

Особенности современного экономического анализа. Методика стратегического анализа.

Тема 3. Современные инструменты финансового анализа

Традиционные способы и приемы экономического апализа. Финансовые инструменты при оценке деятельности экономических субъектов.

Тема 4. Экономико-математическое моделирование.

Понятие модели в математике и экономике. Особенности экономико-математического моделирования. Общие требования к моделям. Классификация экономико-математических моделей. Свойства моделей. Типы данных при моделировании экономических процессов и явлений. Состав моделей, типы переменных в экономических моделях. Этапы экономико-математического моделирования. Прогнозирование с помощью экономико-математических моделей. Экстраполяция и интерполяция дапных. Липия тренда. Прогнозы развития явления в MS EXCEL. Построение липии тренда.

Tema 5. Корреляционный анализ для выявления взаимосвязи между величинами и его проведение средствами Excel

Виды связей исследуемых признаков. Корреляционная связь как частный случай стохастической связи. Основная задача корреляционного анализа. Оценка наличия и определение силы связи между исследуемыми признаками. Выявление факторов, оказывающих наибольшее влияние на результативный признак. Возможности МS Excel для осуществления корреляционного анализа.

Тема 6. Регрессионный анализ как средство оценки взаимосвязи и моделирования зависимости между переменными. Использование инструментов Excel для его проведения

Основная задача регрессионного анализа. Метод наименьших квадратов для оценки параметров регрессионной модели. Определение формы связи, выбор и построение модели, установление степени влияния факторов на результативный

признак и прогнозирование значений зависимой переменной. Инструменты MS Excel для осуществления регрессионного анализа.

Tema 7. Дисперсионный анализ как средство выявления зависимостей в экспериментальных данных и его реализация с помощью функций Excel.

Задачи дисперсионного анализа. Результативный признак и факторы. Существенность факторов. Предпосылки и границы применения дисперсионного анализа. Разложение общей вариации результативного признака на межгрупповую и внутригрупповую. Реализация процедуры дисперсионного анализа в MS Excel. Интерпретация результатов

Tema 8. Знакомство с онлайн-средой Google Colaboratory. Представление и визуализация данных на языке Python

Основные принципы работы с Google Colaboratory. Представление данных моделей в виде последовательностей (Series) и датафреймов (DataFrame). Основные типы графиков в Python.

Тема 9. Модели линейной и полиномиальной регрессий*)

Назначение линейной и полиномиальной регрессий. Примеры создания и исследования этих регрессионных моделей в Google Colaboratory. Оценка точности моделей.

Тема 10. Модель бинарной логистической регрессии

Назначение бинарной логистической регрессии. Пример создания и исследования этой регрессионной модели в Google Colaboratory. Оценка точности модели.

Тема 11. Модели дерева припятия решений и случайного леса

Назначение модели дерева принятия решений и модели случайного леса. Примеры создания и исследования этих кластерных моделей в Google Colaboratory. Выявление важных признаков в данных для модели случайного леса. Оптимизация данных моделей.

Tema 12. Модель кластерного анализа k-means

Назначение моделей кластеризации. Создание и исследование модели кластерного анализа k-means в Google Colaboratory на примере классификации ирисов Фишера.

Тема 13. Модели факторного и разведочного анализа данных

Назначение моделей факторного и разведочного анализа данных. Примеры создания и исследования этих кластерно-регрессионных моделей в Google Colaboratory.

Тема 14. Модели сверточных нейропных сетей

Сверточные пейронные сети как универсальные классификаторы. Типы слоев нейронной сети. Функции активации нейронов. Мстрики обучения

нейропной сети. Пример создания и исследования работы сверточной нейропной сети для реализации бинарной классификации.

Тема 15. Оценка точности моделей

Понятие метрик бинарной классификации. Рассмотрение примера на построение матрицы ошибок (confusion matrix) и вычисление метрик Accuracy, Precision, Recall, F-score и AUC ROC.

Содержание практических занятий

№ темы	Наименование (содержание) темы, по которой предусмотрено практическое запятие	Формы и методы проведения
1	Дизайн паучного исследования. Успешные дизайны современных исследований (на примере SPSS)	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
2	Современные тенденции и гренды экономического анализа	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
3	Современные инструменты финансового анализа	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
4	Экономико-математическое моделирование	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
5	Корреляционный апализ для выявления взаимосвязи между величинами и его проведение средствами Excel	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
6	Регрессионный анализ как средство оценки взаимосвязи и моделирования зависимости между переменными. Использование инструментов Excel для его проведения	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
7	Дисперсионный анализ как средство выявления зависимостей в экспериментальных данных и его реализация с помощью функций Excel	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
8	Знакомство с оплайн-средой Google Colaboratory. Представление и визуализация данных на языке Python	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
9	Модели линейной и полиномиальной регрессий	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
10	Модель бинарной логистической регрессии	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
11	Модели дерева принятия решений и случайного леса	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
12	Модель кластерного анализа k-means	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
13	Модели факторного и разведочного анализа данных	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
14	Модели сверточных вейронных сетей	Устный опрос, выполнение практических заданий, обмен опытом, тестирование
15	Оценка точности моделей	Устный опрос, выполнение практических заданий, обмен опытом, тестирование

Содержание самостоятельной работы слушателей

Основная цель самостоятельной работы слушателей – закрепление знаний, полученных в ходе лекционных и практических занятий.

Индивидуальная консультационная работа преподавателей со слушателями осуществляется весь период обучения.

N2 11/11	Наименование (содержание) темы	Формы и методы проведения
1	Дизайн научного исследования. Успешные дизайны современных исследований (на примере SPSS)	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
2	Современные тенденции и тренды экономического анализа	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
3	Современные инструменты финансового анализа	Изучение основной и дополнительной литературы по программе; выполнение практических задапий
4	Экономико-математическое моделирование	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
5	Корреляционный анализ для выявления взаимосвязи между величинами и его проведение средствами Excel	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
6	Регрессионный анализ как средство оценки взаимосвязи и моделирования зависимости между переменными. Использование инсгрументов Excel для его проведения	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
7	Дисперсионный анализ как средство выявления зависимостей в экспериментальных данных и его реализация с помощью функций Excel	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
8	Знакомство с онлайн-средой Google Colaboratory. Представление и визуализация данных на языке Python	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
9	Модели липейной и полиномиальной регрессий	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
10	Модель бинарной логистической регрессии	Изучение основной и дополнительной литературы по программе; выполнение практических заданий
11	Модели дерева принятия решений и случайного леса	Изучение основной и дополнительной литературы по программе; выполнение практических заданий

		Изучение основной и
12	Модель кластерного анализа k-means	дополнительной литературы по
12	модель кластерного анализа к-пісанз	программе; выполнение
		практических заданий
		Изучение основной и
13	Модели факторного и разведочного анализа	дополнительной литературы по
1.5	данных	программе; выполнение
		практических заданий
	Модели сверточных нейропных сетей	Изучение основной и
14		дополнительной литературы по
1-7		программе; выполнение
		практических заданий
		Изучение основной и
15	Оценка точности моделей	дополнительной литературы по
13	Оцепка точности моделеи	программе; выполнение
		практических заданий

Список литературы:

Основная литература:

- 1. Протодьяконов, А.В. Алгоритмы Data Science и их практическая реализация на Python: учебное пособие / Протодьяконов А.В., Пылов П.А., Садовников В.Е. М, Вологда: Инфра-Инженерия, 2022. 392 с.
- 2. Хливненко, Л. В. Практика пейросетевого моделирования: учебное пособие для вузов / Л. В. Хливненко, Ф. А. Пятакович. СПб: Лань, 2021. 200 с.
- 3. Пласкова, Н. С. Экономический анализ : учебник / Н.С. Пласкова, Н.А. Проданова. Москва : ИНФРА-М, 2023. 324 с.
- 4. Притчина, Л. С., Экономстрика. Теория и практика: учебник / Л. С. Притчина, Ю. А. Кавин, ; под ред. Л. С. Притчиной. Москва: КноРус, 2023. 382 с
- 5. Яковлев, В. Б., Эконометрика в Excel и Statistica : учебное пособие / В. Б. Яковлев. Москва: КноРус, 2022. 380 с.
- 6. Соловьев, В. И., Анализ данных в экономике: Теория вероятностей, прикладная статистика, обработка и анализ данных в Microsoft Excel: учебник / В. И. Соловьев. Москва: КноРус, 2023.
- 7. Тихомиров, Д. А., Анализ данных (с применением программы SPSS): учебник / Д. А. Тихомиров. Москва: КноРус, 2022. 244 с.

Дополнительная литература:

- 1. Клетте, Р. Компьютерное зрение. Теория и алгоритмы: учебник / Рейнхальд Клетте; перевод с анг. А. А. Слинкина. М: ДМК Пресс, 2019. 506 с.
- 2. Грас, Д. Data Science. Наука о данных с нуля / Джоэл Грас. СПб: БХВ-Петербург, 2020. 411 с.
- 3. Бирюков, Д. В., Статистика в решении социально-экономических задач: учебное пособие / Д. В. Бирюков.
- 4. Карлберг, К. Регрессионный анализ в Microsoft Excel / К. Карлберг. М.: Диалектика, 2019. 400 с.

Организационно-педагогические условия реализации программы новышения квалификации

1. Материально-технические условия, необходимые для осуществления

образовательного процесса

Наименование специализированных учебных помещений	Вид занятий	Наименование оборудования, программного обеспечения
Учебный интерактивный класс	Лекции Практические занятия	Мультимедийное оборудование, компьютеры. Компьютер, подключенный к сети Интернет, интернет-браузер. Прикладные программы для просмотра текстовых и видеоматериалов.

Материально-технические условия соответствуют действующим санитарным и противопожарным правилам и нормам.

2. Перечень информационных технологий и учебно-методическим условий, используемых при осуществлении образовательного процесса

При проведении занятий с применением ЭО и ДОТ проведение вебинаров для слушателей осуществляется в удаленном доступе. Преподавателями используются компьютерные презентации, работу в чате, индивидуальное консультирование слушателей.

Условия для функционирования электронной информационно-

образовательной среды

Электронные	Вид	Наименование оборудования,
информационные ресурсы	Занятий	программного обеспечения
Система дистанционного	Итоговая аттестация	Компьютер, подключенный к сети
обучения, система		Интернет; интернет-браузер;
видеоконференцевязи		Прикладные программы для
		просмотра текстовых и
		видеоматериалов

3. Организация образовательного процесса

В образовательном процессе используются разнообразные формы работы со слушателями.

- лекция (видеолекция) с мультимедийным сопровождением по наиболее сложным вопросам программы;
- лекция-вебинар с использованием современных технических средств обучения;
- практические занятия и самостоятельная работа с использованием современных технических средств обучения;
- кейс-стади (в том числе видео-кейсы)— изучение конкретных ситуаций из практики (casestudy), для выполнения данного вида заданий обучающимся должна быть представлена в письменной форме информация относительно реальной ситуации (профессиональной или жизненной) и поставлены конкретные задачи её изучения проблемы, обучающиеся анализируют различные аспекты проблемы и предлагают выработанные решения;

- тестирование метод оценки знаний, умений, навыков обучающихся и др.

Обучение проводится, в том числе с использованием ЭО и ДОТ, реализуемых посредством информационно-телекоммуникационных сетей при опосредованном взаимодействии слушателей и педагогических работников.

В процессе обучения слушатели обеспечиваются необходимыми для эффективного прохождения обучения учебно-методическими материалами и информационными ресурсами в объеме изучаемого курса, которые могут быть объединены в учебно-методический комплекс. Материалы учебно-методического комплекса доводятся до всех слушателей курса.

Итоговая аттестация проводится на образовательном портале Финансового университета посредством информационно-телекоммуникационных сетей.

4. Кадровое обеспечение образовательного процесса

Учебный процесс со слушателями обеспечивают квалифицированные сотрудники Финансового университета, а также приглашенные специалисты и действующие практики других организаций.

Описание системы оценки качества освоения программы

В систему оценки качества освоения программы «Современные тренды и цифровые инструменты анализа данных в научных исследованиях»

входят:

- текущий контроль;
- итоговая аттестация.
- 1. Текущий контроль усневаемости реализуется в ходе проведения практических занятий в форме устного опроса, обмена опытом работы, выступлений слушателей по узловым вопросам программы, путем выполнения практических заданий, разбора конкретных ситуаций, тестирования.
 - 2. Форма итоговой аттестации зачет в форме тестирования.

Примеры тестовых заданий для итоговой аттестации:

- 1. Какие из перечисленных ниже методов являются методами выделения тренда? Укажите все верные варианты ответа:
 - +Метод укрупнения интервалов.
 - +Метод скользящей средней
 - +Метод паименьших квадратов
 - Метод экспертной оценки
- 2. Что из перечисленного не является классом экономико-математической модели:
 - + Модель Лапласа
 - -Модели временных рядов
 - -Регрессионные модели
 - -Системы одновременных уравнений

- 3. Суть метода наименьших квадратов состоит в минимизации
- суммы остаточных величин
- дисперсии результативного признака
- + суммы квадратов остаточных величин
- модулей остаточных величин
- 4. Коэффициент регрессии в линейной регрессии совокупного спроса на мобильные телефоны (тыс. руб.) по цене (руб.) оказался равным -1. Это означает:
 - увеличение цены на 1% снижает спрос на мобильные телефоны на 1%
 - увеличение цена на 1 рубль снижает спрос на мобильные телефоны на 1%
- + увеличение цены на 1 рубль снижает спрос на мобильные телефоны на 1 тысячу рублей
- увеличение цены на 1% снижает спрос на мобильные телефоны на 1 тысячу рублей
 - полученное число не имеет экономической интерпретации
- 5. Случайными воздействиями обусловлено 12% дисперсии результативного признака. Следовательно, значение коэффициента детерминации равно
 - 88
 - -0.12
 - +0.88
 - 12
 - 1.44
- 6. Степень влияния неучтённых факторов в рассматриваемой линейной регрессионной модели можно определить с помощью:
 - коэффициента эластичности
 - парного линейного коэффициента корреляции
 - бета-коэффициента
 - + коэффициента детерминации
 - коэффициента аппроксимации
- 7. Чем является значение коэффициента наклона (slope coefficient) в линейной регрессии?
 - + Показатель степени связи между признаком и целевой переменной
- + Показатель, как изменение одного призпака влияет на изменение целевой переменной
 - Мера отклонения прогнозируемых значений от фактических значений
 - Объясняемая вариация в данных
- 8. Какая функция используется для оценки значений целевой переменной в линейной регрессии?
 - + Mean Squared Error (MSE)
 - Logistic Loss
 - Cross Entropy
 - + R-squared
 - 9. Что представляет собой логистическая регрессия?
 - + Метод классификации данных
 - + Метод вычисления вероятности события

- Техника для нахождения линейных отношений в данных
- Модель для аппроксимации нелинейных функций
- 10. Какая функция используется для расчета вероятности в логистической регрессии?
 - Mean Squared Error (MSE)
 - Logistic Loss
 - + Cross Entropy
 - R-squared
 - 11. Что такое факторный анализ?
 - Метод построения регрессионных моделей
 - Техника для анализа зависимости между переменными
 - + Метод исследования факторов, влияющих на явление
 - Алгоритм для разделения выборки на кластеры
 - 12. В каком виде подготавливаются дапные для факторного анализа?
 - В виде таблицы с значениями переменных
 - + В виде факторных нагрузок и вариантной матрицы
 - В виде графических диаграмм
 - В виде гипотез и альтернативных моделей
 - 13. Что измеряет коэффициент корреляции Пирсона?
 - + Силу и направление линейной связи между двумя переменными
 - Разницу между средними значениями двух групп
 - Степень дисперсии в данных
 - Количество выбросов в данных
 - 14. Какие значения может принимать коэффициент корреляции Пирсона?
 - От -1 до 0
 - От 0 до 1
 - + От -1 до 1
 - От 0 до бесконечности
- 15. Какая из следующих техник является методом без учителя для кластеризации данных?
 - Логистическая регрессия
 - Линейная регрессия
 - + K-средних (K-means)
 - Дерево решений
 - 16. Что такое функция потерь (loss function) в нейросетевых моделях?
 - Метод для минимизации ошибки обучения
- + Математическая функция для оценки разницы между прогнозируемыми и фактическими значениями
 - Алгоритм для оптимизации гиперпараметров модели
 - Метод для извлечения признаков из данных
- 17. Какая функция активации обычно используется в скрытых слоях нейронных сетей?
 - + Сигмовидная функция
 - + Гиперболический тангенс

- Прямая функция
- Квадратичная функция
- 18. Какой метод оптимизации обычно используется для обучения глубоких нейронных сетей?
 - + Стохастический градиентный спуск (SGD)
 - + Адам оптимизатор
 - Наивный Байесовский классификатор
 - Метод наискорейшего спуска
 - 19. Что такое масштабирование данных в машинном обучении?
 - Метод преобразования категориальных признаков в числовой формат
 - + Метод приведения числовых признаков к заданному диапазону
 - Метод удаления выбросов из данных
 - Метод выравнивания неравномерно распределенных классов
 - 20. Что такое one-hot encoding в машинном обучении?
 - Метод обработки пропущенных значений в данных
 - Метод нормализации числовых признаков
 - + Метод кодирования категориальных признаков
 - Метод разделения данных на обучающую и тестовую выборки
 - 21. Что делает функция train_test_split() из библиотеки Scikit-learn?
 - + Делит данные на обучающую и тестовую выборки
 - Объединяет несколько датафреймов в один
 - Изменяет размерность массива данных
 - Применяет функцию активации к слоям нейронной сети
 - 22. Что делает функция fit() в Scikit-learn?
 - + Обучает модель на обучающих данных
 - Приводит данные к заданному диапазону
 - Масштабирует числовые признаки
 - Преобразует категориальные признаки в числовой формат
 - 23. Что представляет собой кросс-валидация (cross-validation)?
 - Метод выбора наилучшей модели на основе метрик оценки
 Метод создания искусственно сбалансированных данных
 - Метод измерения близости двух объектов
 - + Метод оптимизации параметров модели обучаемого алгоритма
- 24. Какую метрику следует использовать для оценки точности регрессионной модели?
 - F-статистика
 - R2-коэффициент
 - Точность и полнота (Precision and Recall)
 - + Среднеквадратическая оппибка (MSE)

Порядок проведения: тестирование проводится с личного компьютера, 20 тестовых вопросов, которые соответствуют темам, рассмотренным в рамках всей учебной программы.

Для получения зачета необходимо правильно ответить не менее чем на 14 тестовых вопросов в любой попытке.

Слушателям, которые успешно прошли итоговую аттестацию выдается удостоверение о повышении квалификации Финансового университета при Правительстве Российской Федерации.

Начальник отдела ДОПиТВ

at

А.С. Ремизова